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2 Exascale Computing Project

Project Overview

• Ron Brightwell – project manager

• OS/On-Node Runtime (OS/ONR) Team
– Stephen Olivier – technical lead, runtime systems
– Kevin Pedretti – technical lead, operating systems
– Andrew Younge – containers and virtualization
– Kurt Ferreira, Scott Levy – MPI and noise characterization
– Ryan Grant – interconnects, network stack, MPI Forum
– Noah Evans – runtime and operating systems

• ASD Technology Demonstrator Team
– Michael Tupek
– Jesse Thomas
– Patrick Xavier

• Funding: $1500k per year
– $1275k OS/ONR
– $225k Tech Demo

Qthreads
Impact Goal Impact Metric
Maximize the impact of Kokkos
and AMT programming models 
developed under SNL ATDM 
project

The number of SNL legacy 
applications using Kokkos and 
AMT models

Develop OS/R resource 
management policies and 
mechanisms appropriate for SNL 
ATDM applications

The number of SNL ATDM and 
ECP applications and vendor 
OS/R environments using 
technologies developed in this 
project
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Project Plan

• On-node runtime ATDM effort started in FY16, combined OS/R effort in FY17
• Four Main Thrust areas

– Containers and virtualization technology
– Characterizing applications’ MPI usage and sensitivity to system noise
– Lightweight operating systems
– Runtime systems for on-node multithreading

• Technology demonstrator
– Pave path to integrate ATDM-developed technologies into the wider ASC integrated code 

suite, principally the Sierra engineering analysis applications
– Produce demonstration applications to drive development of Asynchronous Many-Task 

Scheduling toolset
– Enable leveraging of Sierra-developed technologies to support ATDM application milestones 

(for example stk::simd and stk::search)
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Significance for ECP and ASC
• Provide system software support for the ATDM applications and the libraries (e.g., Kokkos and 

Darma) on which they are built

• Demonstrate use of technologies for exploiting emerging architectures and programming models 
in contexts relevant to ASC Integrated Codes (i.e., Sandia’s non-ATDM mission applications)

• Prepare for efficient use of current and future ATS platforms and the coming exascale systems

• Coordinate with broader ECP efforts to prepare the software ecosystem for exascale
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Long-term Deliverables (FY19 and Beyond)

Work for future deliverables beyond FY19:

• System software for application enablement on successive ATS systems as they are deployed

• Early evaluation advanced hardware developed in Path Forward and exascale testbeds
– Interconnect technology
– Novel developments in node architectures

• Deeper interactions with Integrated Codes for use of ATDM technologies in mission apps

Project Milestone
TD Demonstrate integration of DARMA AMT enabled module with MPI based solvers in the tech demonstrator
TD Enhance and optimize stk::simd toolset for use on ATS-2
OSR Deploy containers and related technologies on advanced architecture testbed systems
OSR Evaluate performance of ATDM workloads running on vendor lightweight kernel OS/R stacks
OSR Test and evaluation of node resource management and runtime on ATS-1/2
OSR Characterize OS/R resource usage for ATDM workloads and assess impact on performance
OSR Contribute to OpenMP specification and vendor engagement in support of OpenMP 4.x-5.0 to meet the needs of Kokkos and ATDM 

apps
OSR Contribute to MPI specification and vendor engagement in support of standards compliant and performant MPI implementation for

Kokkos and ATDM applications
OSR Contribute to utility thread interface (UTI) specification with Intel, RIKEN, and CEA. Engage with ATS vendors to prototype and deploy 

on ATS systems
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Delivery of Capabilities
• Strong track record

– Production lightweight OS deployment on ASC platforms, most recently Red Storm
– Qthreads runtime used as tasking layer in Cray’s Chapel runtime
– Portals network semantics adopted by multiple hardware vendors

• Influence in development of standards like MPI and OpenMP

• Incorporating container technologies into ATDM DevOps workflows

• Qthreads runtime, Kitten OS available open source on github
– Qthreads uses BSD license, Kitten uses GPL
– Possible inclusion in OpenHPC
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Milestone Progress: Summary

Goal Metric
Maximize the impact of Kokkos and AMT programming 
models developed under SNL ATDM project

The number of SNL legacy applications using Kokkos and 
AMT models

Develop OS/R resource management policies and 
mechanisms appropriate for SNL ATDM applications

The number of SNL ATDM and ECP applications and 
vendor OS/R environments using technologies developed 
in this project

Project Completed FY17 Milestone

TD Evaluate the performance of technology demonstrator that exercise ATDM NGP components and exhibit a range of load 
balancing and data movement scenarios that are representative of Sandia engineering codes

OSR Requirements Gathering for OS Services

OSR Characterize OS jitter signatures critical to performance at exascale

OSR Refactored and optimized Qthreads/Kokkos tasking implementation for manycore

OSR OS support for on-node resource management and containerization

OSR Prototype of on-node system software resource management

OSR Develop SNL-OS support for Trinity ATS-1 platform
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Highlights: Enabling Diverse Software Stacks on Supercomputers 
using High Performance Virtual Clusters

• Problem
– HPC, Large-Scale Data Analytics, and Cloud have significantly different OS/R requirements
– Containers cover many use cases, but not ones where different OS kernels are required

• Approach
– Add hypervisor capability to supercomputer compute node OS
– Build virtual clusters using a collection of virtual machines

8

Impact: First demonstration of virtual 
clusters on Cray systems.  Cray has 
reproduced results in house and are 

working with us on tech transfer.
HPCG	Running	on	Cray	XC30,	Native	vs.	Virtual

Spark-PERF	Running	on	Cray	XC30	in	Virtual	Cluster

Scale
Through

put
Aggr-by-

key
Aggr-by-
key-int

Aggr-by-
key-

naive

Sort-by-
key Sort-by-

key-int Count
Count-
filter

0.001 2.6585 0.106 0.1085 0.199 0.114 0.1125 0.034 0.0575

0.01 2.6285 0.219 0.1905 0.4135 0.3065 0.3765 0.0395 0.0935

0.1 2.683 0.474 0.437 0.9605 0.839 0.7075 0.056 0.1495

1 2.6975 2.24 1.886 5.19 2.976 1.797 0.162 0.2665

10 2.642 15.429 47.629 32.9335 5.378 3.9455 1.1095 1.1935
Cluster’17 Paper: Enabling Diverse Software Stacks 
on Supercomputers using High Performance Virtual Clusters 
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A Tale of Two Systems: Using Containerization to Deploy
HPC Applications on Supercomputers and Clouds

• Problem
– Supercomputers are scarce resources, busy and expensive

• Approach
– Leverage Singularity containers to enable initial application dev/test in cloud,

seamlessly move to supercomputer when needed for higher performance
– Compared performance of same containers running on Cray and Amazon EC2 (for similar hardware)

9
CloudCom’17 Paper: “A Tale of Two Systems: Using Containerization 
to Deploy HPC Applications on Supercomputers and Clouds”

IMB PingPong Latency HPCG Weak Scaling

Impact:
Container portability 

from laptops, to clouds, 
to supercomputers with 

native performance
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Highlights: Orchestrating Specialized OS/R’s in Multi-Enclave 
Environments
• Problem

– Multi-kernel OS/R’s for exascale: Intel mOS, RIKEN McKernel, DOE Hobbes
– No common infrastructure for deploying, managing, and composing these OS/R’s

• Approach
– Develop generalized OS/R agnostic interfaces for managing and configuring 

multiple OS/R enclaves running on the same compute node

10

Orchestrating Specialized OS/Rs in Supercomputing Environments Conference’17, July 2017, Washington, DC, USA
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Figure 1: High level view of resource management in an ar-
bitrary multi-OS/R system

and Singularity [27] allow users to customize their user-level sys-
tem image with containers, and provide coarse grained resource
partitioning operations via interfaces such as Linux cgroups, while
sharing the underlying OS kernel across all application components.

The major takeaway of this discussion is that, while special-
ized resource management is widely recognized as a critical fea-
ture for exascale system software, there is little convergence on
where resource management will actually occur, and there is no
existing OS/R architecture that can arbitrarily support specialized
resource management at each level of the stack. Today’s underlying
multi-enclave OS/R architectures [10, 30, 34] each provide environ-
ments that are tightly coupled to a speci�c lightweight co-kernel.
Thus, while these e�orts have achieved impressive results for noise
removal and have made application-level resource management
practical in real systems, there is no broader support for other spe-
cialized kernels or runtimes, entities that provide a wide array of
system services that will likely be needed at exascale.

The approach we take in this work is to provide arbitrary support
for specialization across all layers of the system software stack. Our
system supports any arbitrary con�guration of specialized kernels,
runtimes, and applications and allows each level of the stack to
manage underlying hardware resources directly.

4 ORCHESTRATING SPECIALIZED OS/RS
Exascale system software is trending towards specialized OS/R
architectures [10, 12, 13, 22, 30, 34, 37]. In this work, we build o�
of the recent e�orts of the HPC systems software community in
specialized OS/R architectures. Speci�cally, we provide a core set
of interfaces and resource management principles that make it
straightforward to (1) leverage these and additional arbitrary OS/Rs
in future supercomputers, and (2) orchestrate jobs, work�ows, and
other system activities across multiple enclaves in multi-OS/R based
systems.

4.1 System Components
The primary motivation behind the majority of specialized OS/R
architectures is the desire to provide customized resource manage-
ment approaches that have been optimized to a speci�c subset of
workloads. These systems allow low overhead access to hardware
resources with a small set of abstractions tailored to the needs of
the target applications. As such, deploying and managing a collec-
tion of these OS/Rs requires a uni�ed approach to allocating and
assigning resources for each system software layer. To provide this
capability we have implemented a node-level resource management
framework that operates outside the context of an operating sys-
tem. In our model, resources are dynamically assigned to system
software instances via user-level operations that are independent
of any other OS/R running on the node.

Underlying our approach is a very thin set of abstractions that
are used to represent and manage individual hardware resources.
Our approach operates on two primary classes of objects: Entities
which are de�ned as any software components capable of directly
managing a set of hardware resources, and Resources which are a
set of hardware units capable of being independently managed by
a given Entity.

Hobbes Entities. In Hobbes, entities are any piece of software that
is able to directly manage a raw piece of physical hardware. This
de�nition intentionally does not specify at what layer of the system
software stack the entity is operating at. It is possible for a Hobbes
entity to be an operating system kernel, a runtime environment, or
even an application itself. This approach allows various software
components to e�ectively bypass resource management policies of
underlying system software layers when the features provided by
those layers are not needed.

Hobbes Resources. A resource in Hobbes is any piece of hardware
that is functionally “isolatable" from the other hardware resources
on a node. In general, resources are course grained components
collected by decomposing the full set of hardware resources on
a node. For example, a resource would consist of an entire CPU
core, or a large chunk of contiguous physical memory (the size is
con�gurable, but is typically 128MB). Resources do not “belong”
to any given OS/R but are rather dynamically allocated to entities
as they are needed. Resources are represented with an abstract re-
source handle that uniquely identi�es that resource in the database.
These handles are opaque, but can be translated to a hardware-level
representation of a given resource as needed.

4.2 User-level Resource Management
The primary resource management layer of Hobbes is a user-level
service that provides distributed access to each entity on the system.
This is accomplished using a node-level information service that
tracks the state of each hardware resource and OS/R instance/en-
tity. All of this state is collected and stored in a globally accessible
in-memory database created by a user-level daemon. The database
itself is stored in a raw physical memory that is explicitly mapped
into the address space of each entity that wishes to access it. The
database allows distributed operations so entities are capable of
directly manipulating the database state, which in turn allows enti-
ties to independently allocate certain resources directly as they are

Leviathan	Node	Manager
Entity: Any	piece	of	software	that	can	manage	a	raw	piece	of	hardware	
Resource: Any	piece	of	hardware	that	is	functionally	isolatable

Example:
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Impact:
Effective 

coordination of
on-node resources
between multiple

OS/R environments 
with excellent 
performance 

isolation capabilities

SC’17 Poster; conference paper in submission

All	environments	perform	similarly
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• Problem
– Extreme-scale communication performance limited by speed 

of MPI match time, but system behavior not well understood

• Approach
– Extended LogGOPSim simulator to track MPI resource usage 

without perturbing application
– Track sizes and occupancy times of posted receive and 

unexpected message queues (results shown for MILC)

11

PQ search depth increases with scale PQ occupancy decreases with scale

Search depths vary throughout execution

EuroMPI/USA ’17 Paper: “Characterizing MPI 
Matching via Trace-based Simulation

Highlights: MPI Usage Characterization via Simulation

Impact:
Understanding of MPI 
matching behavior to 

guide hardware 
implementation choices.
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Highlights: Scalable Monitoring to Diagnose Runtime Variability
• Problem

– Performance variability is significant on modern systems and getting worse
– Common question from users: “Why does my application performance vary so much?”  

• Approach
– Leverage scalable system monitoring infrastructure (LDMS)
– Analyze and identify actionable metrics associated with application performance degradation

• Key results
– Shared network contention and I/O are key sources of variability and can be measured
– Power usage differences across nodes can be useful for identifying anomalous system issues 

12

Impact: Infrastructure for collecting + analyzing large volumes of actionable system monitoring data

Per-Node Memory Power Usage vs. Time: PARTISN on 1024 Trinity KNL Nodes

1 outlier node this run, other runs did not exhibit

Analysis of Cray Aries Network
Counters Identify Network Links

with High Congestion (Red)

CUG’17 Paper: “Runtime Collection and Analysis of System Metrics 
for Production Monitoring of Trinity Phase II”

This run was 30% slower than other identical runs
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Integration and Readiness
• Support other ATDM projects, e.g., Kokkos and Darma in SNL software stack

– Qthreads runtime also available through Spack

• Focus on performance and scalability
– Most performance testing done using Sandia’s ASC CSSE testbeds
– Larger scale testing using CTS and ATS systems
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Related Projects
• Sandia ATDM Programming Models (Kokkos and Darma)

– We provide enabling system software support and a bridge for their technologies to Sandia’s 
ASC Integrated Codes

• SNL ASC Integrated Codes (Non-ECP ASC Software)
– These are the NNSA mission applications, current and future consumers of ATDM technology

• ARGO project
– The other ECP OS project led by Argonne

• Non-DOE Software
– mOS, Intel’s lightweight OS that we are evaluating
– McKernel, RIKEN
– Cray Chapel language for high productivity HPC and Sandia Multithreaded Graph Library 

(MTGL) use the Qthreads runtime system
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Next Steps (FY18)
Project Milestone Title
TD Demonstrate efficient combination of Kokkos on-node parallelism with AMT in the contact/multiscale tech demonstrator

TD Develop stk::simd into toolset usable by ATDM applications, support and optimize the stk::simd toolset for ATS-1

OSR Integrate Kokkos-enabled contact into multiscale AMT technology demonstrator

OSR Coordinate with ATDM DevOps to make plan for utilizing containers for build and testing of Trilinos

OSR Prototype usage of containers and related technologies to support ATDM developer workflows

OSR Evaluate lightweight kernel operating systems on advanced architecture testbed, with vendor and ACES engagement to 
investigate performance and tech transfer of Sandia lightweight kernel capabilities

OSR Resource manager applied to DARMA+Kokkos use case scenarios

OSR Runtime system pathfinding and development targeting ATS-1/2

OSR Characterization of MPI resource usage for ATDM workloads and its impacts on performance

OSR Prototype of message-based open source simulation framework capable of quantifying MPI resource usage for MPI-based ATDM 
workloads

OSR Contribute to OpenMP, MPI, and UTI (Utility Thread Interface) specifications and vendor engagement in support of standards 
compliant and scalable implementations to meet the needs of Kokkos and ATDM apps
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Risks and Issues

Risk/Issue Mitigation
Shifting architectural landscape for 
node designs and interconnect 
technology

Track Path Forward efforts 
and leverage the advanced 
architecture testbeds

Resistance to new programming 
models among IC developers

Engage early and often with 
IC code teams

Overhead of reporting though multiple 
channels diverts effort from the 
technical work

Management commitment to 
streamline reporting (Can ECP 
leaders help reduce burden?)
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